2019
年重庆市中考数学试卷(
A
卷)
一、选择题:本题共
12
小题,每小题
4
分,共
48
分。在每小题给出的选项中,只有一项是符合题目要求的。
1
.
下列各数中,比
小的数是
( )
A.
2
B.
1
C.
0
D.
2
.
如图是由
4
个相同的小正方体组成的一个立体图形,其主视图是
( )
A.
B.
C.
D.
3
.
如图,
∽
,若
,
,
,则
AB
的长是
( )
A.
2
B.
3
C.
4
D.
5
4
.
如图,
AB
是
的直径,
AC
是
的切线,
A
为切点,
BC
与
交于点
D
,连结
若
,则
的度数为
( )
A.
B.
C.
D.
5
.
下列命题正确的是
( )
A.
有一个角是直角的平行四边形是矩形
B.
四条边相等的四边形是矩形
C.
有一组邻边相等的平行四边形是矩形
D.
对角线相等的四边形是矩形
6
.
估计
的值应在
( )
A.
4
和
5
之间
B.
5
和
6
之间
C.
6
和
7
之间
D.
7
和
8
之间
7
.
《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为
50
;而甲把其
的钱给乙,则乙的钱数也为
50
,问甲、乙各有多少钱?设甲的钱数为
x
,乙的钱数为
y
,则可建立方程组为
( )
A.
B.
C.
D.
8
.
按如图所示的运算程序,能使输出
y
值为
1
的是
( )
A.
,
B.
,
C.
,
D.
,
9
.
如图,在平面直角坐标系中,矩形
ABCD
的顶点
A
,
D
分别在
x
轴、
y
轴上,对角线
轴,反比例函数
的图象经过矩形对角线的交点
若点
,
,则
k
的值为
( )
A.
16
B.
20
C.
32
D.
40
10
.
为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度
或坡比
:
的山坡
AB
上发现有一棵古树
测得古树底端
C
到山脚点
A
的距离
米,在距山脚点
A
水平距离
6
米的点
E
处,测得古树顶端
D
的仰角
古树
CD
与山坡
AB
的剖面、点
E
在同一平面上,古树
CD
与直线
AE
垂直
,则古树
CD
的高度约为
( )
参考数据:
,
,
A.
米
B.
米
C.
米
D.
米
11
.
若关于
x
的一元一次不等式组
的解集是
,且关于
y
的分式方程
有非负整数解,则符合条件的所有整数
a
的和为
( )
A.
0
B.
1
C.
4
D.
6
12
.
如图,在
中,
D
是
AC
边上的中点,连接
BD
,把
沿
BD
翻折,得到
,
与
AB
交于点
E
,连接
,若
,
,则点
D
到
的距离为
( )
A.
B.
C.
D.
二、填空题:本题共
6
小题,每小题
4
分,共
24
分。
13
.
计算:
______.
14
.
今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过
25600000
人次,请把数
25600000
用科学记数法表示为
____________.
15
.
一个不透明的布袋内装有除颜色外,其余完全相同的
3
个红球,
2
个白球,
1
个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为
____.
16
.
如图,在菱形
ABCD
中,对角线
AC
,
BD
交于点
O
,
,
,分别以点
A
、点
C
为圆心,以
AO
的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为
____
结果保留
17
.
某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发
2
分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,
2
分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程
米
与甲出发的时间
分钟
之间的关系如图所示
乙给甲手机的时间忽略不计
则乙回到公司时,甲距公司的路程是
______
米.
18
.
在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比
4
:
3
:
5
,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的
种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的
为使川香种植总面积与贝母种植总面积之比达到
3
:
4
,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是
______.
三、计算题:本大题共
1
小题,共
10
分。
19
.
计算:
四、解答题:本题共
7
小题,共
68
分。解答应写出文字说明,证明过程或演算步骤。
20
.
本小题
10
分
如图,在
中,
,
D
是
BC
边上的中点,连接
AD
,
BE
平分
交
AC
于点
E
,过点
E
作
交
AB
于点
若
,求
的度数;
求证:
21
.
本小题
10
分
每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水
珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取
10
名学生的竞赛成绩
百分制
进行整理、描述和分析
成绩得分用
x
表示,共分成四组:
,
,
,
,下面给出了部分信息:
七年级
10
名学生的竞赛成绩是:
99
,
80
,
99
,
86
,
99
2019年重庆中考数学试卷(A卷).docx