试卷库 高考模拟 数学试卷

【数学】陕西省汉中市部分学校2025届高三5月模拟预测试题(解析版).docx

含参考答案 2025年 陕西省 格式: DOCX   21页   下载:1   时间:2025-06-27   浏览:14   免费试卷
温馨提示:当前试卷最多只能预览 2 页,若试卷总页数超出了 2页,请下载原试卷以浏览全部内容。
【数学】陕西省汉中市部分学校2025届高三5月模拟预测试题(解析版).docx 第1页
【数学】陕西省汉中市部分学校2025届高三5月模拟预测试题(解析版).docx 第2页
剩余19页未读,下载浏览全部
陕西省汉中市部分学校 2025 届高三 5 月模拟预测数学试题 一、单选题 1 .已知集合 , ,则 (      ) A . B . C . D . 【答案】 C 【解析】 已知 ,则 ,解得 ,所以 , 则 . 故选: C. 2 .若 ,则 (      ) A . 244 B . 1023 C . D . 1 【答案】 A 【解析】 设 ,则原恒等式可化为 , 令 ,则 , 而 展开式的通项公式为 , 故 ,故 , 故选: A. 3 .已知向量 , ,若 ,则 的值为(      ) A . B . 5 C . D . 【答案】 B 【解析】 因为 , , 所以 , 因为 ,即 ,解得 . 故选: B 4 .已知角 按逆时针方向旋转 ,其终边经过点 ,则 (      ) A . B . C . D . 【答案】 D 【解析】 角 α 逆时针旋转 后,终边经过点 (4,3) ,设旋转后的角度为 , 点 (4,3) 到原点的距离 , 根据三角函数定义: , , , , 因为 , 所以 , 故选; D. 5 .已知抛物线 的焦点 到准线 的距离为 2 ,点 , 是直线 与 轴的交点, 是 上一点,过点 作 于点 , 与 交于点 .若 为 的重心,则 的面积为(      ) A . B . C . D . 【答案】 B 【解析】 对于抛物线 ,已知 ,可得 . 那么抛物线 的方程为 ,其焦点 ,准线 的方程为 . 则 , ( 为抛物线准线与 轴交点) . 因为 为 的重心,所以 为 的三等分点且 . 又因为 ,所以 与 相似,且 ,即 . 不妨设 ,且在第一象限,由抛物线的性质可知点 到准线 的距离 . 已知 ,则 ,解得 . 因为点 在抛物线 上,将 代入抛物线方程得 ,又因为 在第一象限,所以 . 因为 为 的三等分点且 ,所以 . 已知 . 根据三角形面积公式,对于 ,则 . 故选: B. 6 .已知函数 , , ,若 ,则 的最小值为(      ) A . 4 B . 6 C . 8 D . 9 【答案】 C 【解析】 由题意可知: 的定义域为 , 令 ,解得 ;令 ,解得 ; 则当 时, ,故 ,所以 ; 当 时, ,故 ,所以 , 所以 ; 故 , 当且仅当 ,即 时,等号成立, 所以 的最小值为 . 故选: C. 7 .已知 的内角 的对边分别为 , , ,若 的面积为 ,则 的外接圆的面积为(      ) A . B . C . D . 【答案】 C 【解析】 由 , 结合正弦定理得 ,所以 ,所以 , 又因为 ,所以 , 由余弦定理得 ,所以 ,所以 结合正弦定理 (其中 为 的外接圆的半径), 得 ,解得 , 则 的外接圆的面积为 . 故选: C. 8 .在正三棱锥 中, 侧棱 与底面 所成的角为 ,记三棱锥 内切球、外接球的半径分别为 ,则 (      ) A . B . C . D . 【答案】 D
【数学】陕西省汉中市部分学校2025届高三5月模拟预测试题(解析版).docx
微信
客服