试卷库 高一试卷 高一数学下

湖南长沙市长郡中学2022-2023学年高一下学期第一次适应性检测数学试卷(含参考答案)

月考试卷 含参考答案 2023年 2022年 湖南省 长沙市 格式: DOCX   15页   下载:7885   时间:2024-03-09   浏览:1295615   免费试卷
温馨提示:当前试卷最多只能预览 1 页,若试卷总页数超出了 2页,请下载原试卷以浏览全部内容。
湖南长沙市长郡中学2022-2023学年高一下学期第一次适应性检测数学试卷(含参考答案) 第1页
湖南长沙市长郡中学2022-2023学年高一下学期第一次适应性检测数学试卷(含参考答案) 第2页
剩余14页未读,下载浏览全部
长郡中学2022 ~ 2023学年度高一第二学期第一次适应性检测 数学 时量:120分钟 满分:150分 得分 __________ 一、选择题 (本题共8小题,每小题5分,共40分 . 在每个小题给出的四个选项中,只有一项符合题目要求.) 1.已知 ,i为虚数单位,则 ( ). A . 3 B . 4 C . D . 10 2. 的三个内角 A , B , C 所对的边分别为 a , b , c ,若 , 则角 C 的大小为 ( ). A . B . C . D . 3.已知平面向量 , ,若 ,则 ( ). A . B . C . 2 D . 4.函数 的图象大致为 ( ). A . B . C . D . 5.已知正实数 a , b 满足 ,则 的最小值为 ( ). A . 8 B.17 C.20 D.25 6.如图,半球内有一内接正四棱锥 ,该四棱锥的体积为 ,则该半球的体积为 ( ). A . B . C . D . 7.已知 是偶函数且在 上单调递增,则满足 的一个 x 值的区间可以是 ( ). A . B . C . D . 8.已知定义域为 R 的函数 满足 是奇函数, 是偶函数,则下列结论错误的是 ( ). A. 的图象关于直线 对称 B. 的图象关于点 对称 C. D. 的一个周期为8 二、选择题 (本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得2分,有选错的得0分.) 9.下列结论正确的是 ( ). A.模等于1个单位长度的向量是单位向量,所有单位向量均相等 B.已知平面内的一组基底 , ,则向量 , 也能作为一组基底 C .已知单位向量 , 满足 ,则 在 方向上的投影向量为 D.已知 ,i为虚数单位,若复数 为纯虚数,则 10 . 计算下列各式,结果为 的是( ). A . B . C . D . 11 . 的内角 A , B , C 的对边分别为 a , b , c ,则下列命题为真命题的是 ( ). A.若 ,则 B.若 ,则 是钝角三角形 C.若 , 则 为等腰三角形 D.若 , , ,则满足条件的三角形有且只有一个 12 . “奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车 ( Mercedes - benz ) 的logo很相似,故形象地称其为“奔驰定理”,其定义为:已知 O 是 内一点, , , 的面积分别为 , , ,则 ,设 O 是 是锐角 的一点, , , 分别是 的三个内角,以下命题正确的有 ( ). A . 若 ,则 B .若 , , ,则 C.若 O 为 的内心, ,则 D.若 O 为 的垂心, ,则 答题卡 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 三、填空题 (本题共4小题,每小题5分,共20分.) 1 3.设函数 ,则 __________ . 14 . 如图,用斜二测画法画一个水平放置的平面图形的直观图为一个正方形,则原来图形的面积是 __________ . 15 . 已知命题 , 是假命题,则实数 a 的取值范围是 __________ . 16 . 设锐角 的内角 A , B , C 的对边分别为 a , b , c ,若 ,则 的取值范围是 __________ . 四、解答题 (本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17 . (10分)已知 , , . ( 1 ) 求 与 的夹角 ; ( 2 ) 若 ,且 ,求实数 t 的值. 18 .( 12分 ) 已知函数 . ( 1 ) 求 的最小正周期; ( 2 ) 将 的图象向左平移 个单位长度,得到函数 的图象,求不等式 的解集. 19 . (12分)在 中,角 A , B , C 所对的边分别为 a , b , c ,且满足 . ( 1 ) 求角 B ; ( 2 ) 若 D 为 的中点,且 , ,求 的面积. 20 . (12分)噪声污染已经成为严重影响人们身体健康和生活质量的问题.实践证明,声音强度 D ( 分贝 )由 公式 ( a 、 b 为非零常数 ) 给出,其中 为声音能量. ( 1 ) 当声音强度 , , 满足 时,求对应的声音能量 , , 满足的等量关系式; ( 2 ) 当人们低声说话,声音能量为 时,声音强度为30分贝;当人们正常说话,声音能量为 时,声音强度为40分贝,当声音能量大于60分贝时属于噪音,一般人在100分贝至120分贝的空间内约一分钟就会暂时性失聪.问声音能量在什么范围时,人会暂时性失聪 . 21 . (12分)如图,直 三 棱柱 中, , , , P 为线段 上的动点. ( 1 ) 当 P 为线段 上的中点时,求三棱锥 的体积; ( 2 ) 当 P 在线段 上移动时,求 的最小值. 22.(12分)定义非零向量 的“相伴函数”为 ,向量 称为函数 的“相伴向量”(其中 O 为坐标原点).记平面内所有非零向量的“相伴函数”构成的集合为 S . ( 1 ) 设 ,请问函数 是否存在相伴向量 ? 若存在,求出与 共线的单位向量;若不存在,请说明理由; ( 2 ) 已知点 满足: ,向量 的“相伴函数” 在 处取得最大值,求 的取值范 围. 长 郡 中学2022 ~ 2023学年度高一第二学期第一次适应性检测 数学参考答案 一、选择题 (本题共8小题,每小题 5 分,共40分 . 在每个小题给出的四个选项中,只有一项符合题目要求.) 题号 1 2 3 4 5 6 7 8 答案 C B A B D C B C 1.C 【解析】因为 ,所以 .故选 C . 2.B 【解析】由余弦定理得 , 因为 ,所以 . 故选B. 3.A 【
湖南长沙市长郡中学2022-2023学年高一下学期第一次适应性检测数学试卷(含参考答案)试卷word文档在线免费下载.docx
专注试题资源,助力高效备考 - 精准试题,为知识测评赋能
未认证用户 查看用户
该试卷于 上传
微信
客服