试卷库 高考模拟 数学试卷

四川省成都市第七中学高考一轮复习提升竞赛数学讲义:13正弦定理与余弦定理(含解析).docx

2024年 四川省 成都市 格式: DOCX   17页   下载:0   时间:2025-02-20   浏览:14   免费试卷
温馨提示:当前试卷最多只能预览 1 页,若试卷总页数超出了 2页,请下载原试卷以浏览全部内容。
四川省成都市第七中学高考一轮复习提升竞赛数学讲义:13正弦定理与余弦定理(含解析).docx 第1页
剩余16页未读,下载浏览全部
A13.正弦定理与余弦定理 一、基础知识 1.正弦定理:在 中 ,角 所对的边分别为 则 为外接圆半径 . 2.余弦定理:在 中 ,角 所对的边分别为 则 3.三角形 面积公式 : 二、典型例题与基本方法 1. 在 中,若 ,则 等于 2.在 中, ,面积为 ,那么 的长度为 3. 已知锐角 的内角 的对边分别为 ,若 , 则 面积的取值范围是 4. 在 中, 分别为内角 所对的边,且满足 ,若点 是 外一点, ,则平面四边形 面积的最大值是 5. 在直角梯形 中, ,则 6. 在 中, ,点 在边 上, ,且 ,则 的值为 7. 在 中, 是 的内心,若 ,其中 ,则动点 的轨迹所覆盖的面积为 8 .已知平面四边形 为凸四边形 ( 凸四边形即任取平面四边形一边所在直线,其余各边均在此直线的同侧 ) ,且 ,则平面四边形 面积的最大值为 9 .在 中, ,则 的最大值为 10 . 中, 是边 的一个三等分点 ( 靠近点 ) ,记 , 则当 取最大值时, 11. 在 中,若 ,则 12. 在 中,角 所对的边分别是 .已知 . (1)求角 的大小; (2)若 的面积 ,求 的值. 13 .在 中,三个内角 所对的边分别为 , 已知 ,且 (1)求角 的大小; (2)若 的外接圆的半径为1,求 的面积. B13. 练习 姓名: 1. 已知 中, ,那么角 等于 2.在 中,已知 ,则 的最大值是 3. 已知 分别是 的三个内角 的对边,且 ,则 面积的最大值为 4.在平面四边形 中, ,则 的取值范围是 5 .已知 分别为 的三个内角 的对边,且 , 则 6 .在锐角 中, 的对边分别为 ,则 7.在 中,内角 所对的边分别是 ,已知 . (1)求 ; (2)求 的值. 8.设函数 . (1)求函数 的单调区间; (2)在锐角 中,角 所对的边分别为 ,若 ,求 面积的最大值. A13.正弦定理与余弦定理 一、基础知识 1.正弦定理:在 中 ,角 所对的边分别为 则 为外接圆半径 . 2.余弦定理:在 中 ,角 所对的边分别为 则 3.三角形 面积公式 : 二、典型例题与基本方法 1. 在 中,若 ,则 等于 解: 2.在 中, ,面积为 ,那么 的长度为 解: 3. 已知锐角 的内角 的对边分别为 ,若 , 则 面积的取值范围是 解:因为 ,所以 ,所以 , 所以 ,所以由 ,可得 , 所以 因为
四川省成都市第七中学高考一轮复习提升竞赛数学讲义:13正弦定理与余弦定理(含参考答案解析)试卷Word文档在线免费下载x
微信
客服