甘肃省张掖市某校
2024-2025
学年高一下学期
3
月月考检测
数学试卷
一、单选题
.
1.
样本数据
25
,
17
,
26
,
31
,
29
,
18
,
28
,
40
的中位数为(
)
A.
31
B.
29
C.
30
D.
27
【答案】
D
【解析】
样本数据按照从小到大的顺序排列为
17
,
18
,
25
,
26
,
28
,
29
,
31
,
40
,
中间的两个数为
26
,
28
,故中位数为
.
故选:
D
.
2
已知向量
,
,若
,则
(
)
A.
1
B.
3
C.
1
或
D.
1
或
3
【答案】
C
【解析】
因为
,
,
所以
.
又
,所以
,
解得
或
.
故选:
C.
3.
高一(
1
)班有学生
45
人,高一(
2
)班有学生
27
人,高一(
3
)班有学生
36
人,用分层抽样的方法从这三个班中抽出一部分人组成
的方队,进行体操比赛,则高一(
1
)班、高一(
2
)班、高一(
3
)班分别被抽取的人数是(
)
A.
15
,
9
,
12
B.
9
,
15
,
12
C.
12
,
9
,
15
D.
15
,
12
,
9
【答案】
A
【解析】
利用分层抽样的方法得,高一(
1
)班应抽出
(
人),
高一(
2
)班应抽出
(
人),
高一(
3
)班应抽出
(人)
,
则高一(
1
)班,高一(
2
)班,高一(
3
)班分别被抽取的人数是
15
,
9
,
12
.
故选:
A.
4.
的内角
A
,
B
,
C
的对边分别为
a
,
b
,
c
.
已知
,
,则
(
)
A.
B.
C.
D.
【答案】
A
【解析】
因
,
,由正弦定理,
.
故选:
A.
5.
已知
为直线
外一点,且
,若
,
,
三点共线,则
的最小值为(
)
A.
B.
C.
1
D.
【答案】
A
【解析】
因
,
,
三点共线,所以
存在非零实数
,使得
,
所以
,所以
,
所以
,所以
.
当
时等号成立,所以
的最小值为
故选:
A
.
6.
某校高一年级的学生参加了主题为《追寻大儒足迹,传承董子文化》的实践活动
.
在
参观董子文化馆
时,为了
测量董子雕像
高度,在
处测得雕像最高点的仰角分别为
和
,且
,
,则该雕像的高度
约为(
)(参考数据:
)
A.
B.
C.
D.
【答案】
A
【解析】
,
,
,则
,
在
中,
,
,
即
.
所以该雕像的高度
约为
4m.
故选:
A.
7.
在
中,角
所对的边分别为
,若
,则
一定是(
)
A.
直角三角形
B.
等腰三角形
C.
等边三角形
D.
等腰或直角三角形
【答案】
B
【解析】
由
,利用正弦定理,
,
即
,
因
,则
或
(不合题意舍去),
故
△
ABC
一定是等腰三角形
.
故选:
B.
8.
在
中,
,
D
为
所在平面内的动点,且
,则
最小值为(
)
A.
B.
C.
D.
(数学试题试卷)甘肃省张掖市某校2024-2025学年高一下学期3月月考检测试卷(解析版).docx