试卷库 高一试卷 高一数学上

(数学试卷)黑龙江省龙东地区2024-2025学年高一上学期期末考试试题(解析版).docx

期末试卷 含参考答案 2025年 2024年 黑龙江省 格式: DOCX   17页   下载:2   时间:2025-05-09   浏览:59   免费试卷
温馨提示:当前试卷最多只能预览 2 页,若试卷总页数超出了 2页,请下载原试卷以浏览全部内容。
(数学试卷)黑龙江省龙东地区2024-2025学年高一上学期期末考试试题(解析版).docx 第1页
(数学试卷)黑龙江省龙东地区2024-2025学年高一上学期期末考试试题(解析版).docx 第2页
剩余15页未读,下载浏览全部
黑龙江省龙东地区 2024-2025 学年高一上学期期末考试 数学试题 一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分,在每小题给出的四个选项中,只有一项、是符合题目要求的 . 1 . 已知集合 , ,则 ( ) A. B. 或 1 C. 1 D. 5 【答案】 C 【解析】 当 ,解得 或 1 , 当 时, ,与元素互异性矛盾,舍去; 当 时, ,满足要求, 当 时,解得 ,显然与元素互异性矛盾,舍去, 综上, . 故选: C. 2 . 若 ,则 的取值范围是( ). A. B. C. D. 【答案】 D 【解析】 因为 ,所以 , 当 时,对数函数为减函数,所以 ,可得 , 当 时,对数函数为增函数,所以 ,可得 , 综上所述, 的取值范围为 . 故选: D . 3 . 已知定义在 上的函数 的 图象 是连续不断的,且有如下 对应值表 : 那么函数 一定存在零点的区间是( ) A. B. C. D. 【答案】 B 【解析】由于 f ( 1 )> 0 , f ( 2 )< 0 , 根据函数零点的存在定理可知故函数 f ( x )在区间( 1 , 2 )内一定有零点,其他区间不好判断. 故选 : B . 4 . 函数 与 的 图象 可能是( ) A. B. C. D. 【答案】 C 【解析】 函数 为 上的减函数,排除 AB 选项, 函数 的定义域为 , 内层函数 为减函数,外层函数 为增函数, 故函数 为 上的减函数,排除 D 选项 . 故选: C. 5 . 若 则( ) A. B. C. D. 【答案】 A 【解析】 因为 , 所以 , 又 , ,所以 . 故选: A. 6 . 函数 的定义域为 R ,则实数 m 的取值范围是 ( ) A. [0 , 8] B. [ 0 , 8 ) C. [8 , + ) D. 【答案】 A 【解析】 函数 的定义域为 , 即对任意 , , 当 时, 必存在 使得 , 当 时, ,成立 , 当 时, ,即 , 综上,则 的取值范围为 . 故选 : . 7 . 已知函数 f ( x )= ,满足对任意的 x 1 ≠ x 2 都有 < 0 成立,则 a 的取值范围是( ) A. B. ( 0 , 1 ) C. D. ( 0 , 3 ) 【答案】 A 【解析】 ∵ f ( x )对任意的 x 1 ≠ x 2 都有 成立, ∴ f ( x )= 为 R 上 减函数, ∴ , 解得 0 < a ≤ . 故选: A. 8 . 函数 的 图象 如图所示,直线 经过函数 图象 的最高点 和最低点 ,则 ( ) A. B. 0 C. D. 【答案】 D 【解析】 由 的解析式可知, , 中,令 得 ,令 得 , 故 , ,即 , . 故 的周期 .即 ,解得 , 故 ,则 ,得 , . 因为 ,所以 .则 . , , , , , , , , …… , 因为 , . 所以 . 故选: D
(数学试题试卷)黑龙江省龙东地区2024-2025学年高一上学期期末考试试题(含参考答案解析)试卷Word文档在线免费下载文件链接
汇集优质试题,搭建提分阶梯;海量试题库,解锁学习新纬度
未认证用户 查看用户
该试卷于 上传
微信
客服